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We consider an infinitely extended Fermi-Pasta-Ulam model. We show that the slowly modulating ampli-
tude of a narrow wave packet asymptotically satisfies the nonlinear @ofey equatio(NLS) on the real
axis. Using well known results from inverse scattering theory, we then show that there exists a threshold of the
energy of the central normal mode of the packet, with the following properties. Below threshold the NLS
equation presents a quasilinear regime with no solitons in the solution of the equation, and the wave packet
width remains narrow. Above threshold generation of solitons is possible instead and the packet of normal
modes can spread out. Analogous results are obtained fgr'thdel. We also give an analytical estimate for
such thresholds. Finally, we make a comparison with the numerical results known to us and show that, they are
in remarkable agreement with our estimates.

PACS numbgs): 05.45.Yv, 02.30-f, 05.20—y

. INTRODUCTION AND RESULTS normal modes due t& becomes more and more effective,
and energy flows out of the initially excited packet, the mo-
Since the pioneering work of Fermi, Pasta, and Ulamtons becoming more irregular. A popular criterion to define
(FPU) [1] great effort has been devoted to understanding threshold in numerical simulations consists in checking
classical many-body dynamical systems. It became cleggnether equipartition is established within a fixed observa-
from the beginning that a system as “simple” as the oneqn, time (see[2] and[3]). Another one just requires that a

described by the Hamiltonian certain fraction of the initial energy be given out by the ini-
N tially excited packet, irrespective of the modes to which the
Hy(g,p)= 2, $p2+U(qn) +V(ry) (1)  energy flows[4,5]. The available numerical results indicate
n=0

that the energy threshoIECO, apart from the exceptional

(where q, is the position of thenth particle on a one- case of the so-calle@ model(see below; is an increasing
dimensional latticep,, the corresponding conjugate momen- function of wy .

tum, r,=q,.1—0d,, while U andV are given nonquadratic As far as analytical estimates are concerned, the most
potentials, and some specific boundary conditions are asamous one is due to lIzrailev and Chirik@¢€) [6], who, by
signed gives rise, in general, to a complex dynamics, withthe way, were also the first to introduce the notion of a mode
coexistence of ordered and chaotic motions, depending oflependent threshold itself. The IC criterion is based on the
the initial data, on the length of the integration time, and onconcept of the so-called overlapping of resonances, which is
the numbeN of degrees of freedom. At present, a satisfac-known to work rather well for very few degrees of freedom
tory understanding of this dependence is lacking. It has bef7 g]. By extending it to the limit of very many degrees of
come customary to define suitable stochasticity threshold$yeedom and using the fact that in such a limit neighboring
namely, critical values of some control parameters such thaiormal mode frequencies become asymptotically resonant,

below them one has somehow regular motions while abovehe authors predicted that the threshEI‘,"% should be a de-

them the dynamics presents certain characteristics of irregu- : .
larity or “chaoticity.” Normal mode coordinate®,P (nor- Creasing function Ofka’ at least for the FPLE model. A

malizing the quadratic part ¢fiy) can be introduced in the completely different approach was introduced by Berman

familiar way, such that the Hamiltoniai) takes the form and Kolovskii[9], following the idea of approximating the
equations of motion of the Hamiltonian system by a well

L s o known integrable partial differential equation, namely, the
HN(Q,P)=§EK (Pit 0 Q) +V(Q), (20 nonlinear Schidinger equation(NLS). They showed that
such an approximation should hold below a certain energy

wherewy is the frequency of thth normal mode andis a  threshold, which they estimated to have the fofj
suitable perturbing term, producing mode-mode coupling. In=(ky/N)/(1/8).

the particular case of initial data corresponding to excitations In the present paper we too make reference to concepts
of a packet of modes of nearby frequencies centered aboutiavolving the NLS equation, but exploit more consistently
certain kg, a suitable control parameter for a stochasticitythe notions of inverse scattering and soliton theldr§,11].
threshold is the harmonic enerdy of the initially excited  This leads, in a way that will be described below, to a dif-
packet; indeed, by increasirg the energy sharing between ferent analytical estimate for the threshold. This is worked
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out for two models. The first one is an infinitely extended Il. MULTIPLE-SCALE EXPANSION
FPU model, with Hamiltonian FOR THE FPU MODEL

1 02 o B In this section we study the Hamiltonid8). Inspired by
H(q,p)= >, =p2+ = r2+—r3+ s (3)  [3], in analogy with the methods of fluid mechanics we in-
nez 2 8 3 4 troduce dimensionless variables and look for suitable dimen-
sionless order parameters. The dimensionless variahles
involving the real parametel®, «, andp (with Q, g>0)  X,, and p, are defined byr=(Q/2)t, x,=q,/A, and p,
for which the harmonic frequencies are known to be given=rn/A, whereA is a parameter having the dimensions of
by the dispersion relatiom(k) = sin(k/2), ke (0,7]; this  length and playing the role of a dimensional control param-
includes the particular case=0, which is known as theg eter; indeed, for fixed,, by increasingA one increases the

model. For the threshold we find the estimate “actual” amplitudesq,=Ax, and velocitiesg, of the par-
ticles, and so also the energy of the excited modes. In terms
2 of such dimensionless variables the equations of motion take
ES o)~ 0* @ the form
8a[1— (w/Q)?]+3Bw?
(4) Xn=(Xn11TXn-1=2X,)F(pn,pn-1:R, 1),

7
wherew is the frequency of the central normal mode of an F=1+VuR(pn+pn-1) +R(pa+pa_1+prpon-1)
initially excited narrow wave packet. The qualitative dy-
namical property characterizing the threshold is the follow-(the overdot now denoting the derivative with respect)}p
ing one: if att=0 one hasE(w)<Efs,(w), the wave where there appear just two dimensionless parameters,
packet dynamics turns out to be dispersive and the width ofamely,R=48A% Q? andu=4a?/(BQ?); of theseR plays
the packet remains narrow, while f@(w)>ESq () the the role of a Reynolds number, whileis independent of the
width of the packet can increase because of the presence gimMPplitude” A. In general, a realistic intermolecular poten-

solitons. tial has a form of the typ&/(r,)=V,f(r,/&;) with a suit-
We then consider the so calles® model, with Hamil- ~ able functionf, whereV is a characteristic energyneasur-
tonian ing, for example, the depth of a wglland &, is a

characteristic interaction length. A typical case is the
Lennard-JonesglLJ) potential

1 m? €, \
H(q,p)zz,_pﬁ+_Q§+_rﬁ+_Qﬁ 5 12 6
i 2 2 2 4 Viy(r)=av & &o v
)= - +Vq.
R Y L R N 2 °
involving the real parameters, €, A (e,A>0), and analo- 8

gously obtain the estimate
Truncating its Taylor expansiofaboutr,,=0) to fourth or-

1 der, one can approximate it by a FPU potential with
ES ()~ — ('~ ") 00— w,) 6 the following coefficients: 0%/8=36V,/(2'%), al3
N ‘ ’ =257, /(\2 = 238y it is easi
= o/ (V2&), and BlA=1113Vy/(27¢,). It is easily

shown that for all potentials of the above mentioned form the
wherew.= Jm(m?+4¢)Y* while 6(-) is the Heaviside step dimensionless parameteris independent o¥, and &, de-
function. The sharp cutofb, in the latter threshold is due to Pending only on the functional form df in particular, for
the special form of the dispersion relation of the linearizedthe LJ potential one hag=1.78.
problem, namelyw (k) = ymZ+ 4e sird(k/2). From the form of Eqs(7) it is natural to take|R as the

It will be shown below that in both cases, namely, for the “small parameter” in a perturbative scheme. Following an
FPU system and the” model, the thresholds given here are @pproach familiar in the theory of wave propagation in non-
in remarkable agreement with the available numerical estilinear dispersive media, involving generation and modulation
mates. of higher harmonics of carrier waves, we introduce the an-

Notice that, at variance witf6] and[9], who were con- Satz
sidering finite chains of particles, we deal with infinitely ex-
tended chains. On the other hand, we consider initial data Xy = E glalan-oq) y@ (s 7 Ty ;\/ﬁ), (9)

with packets having a finite amount of energy, namely, with ac’

a vanishing energy per particle. This point will be discussed

in the concluding section. where {=RY’n, 7;,=R"”7, and w,=2 sin@2) for a fixed
The analytical treatment leading to the definition and eswave vectorqe (0,7), while 7, ...,y are the so-called

timate of the threshold for the FPU model is given in Sec. Il,slow times fixing the numberM of slow times takes the
and the comparison with available numerical estimates iplace of fixing the perturbative order in standard perturbation
given in Sec. Ill. The analogous discussion for tifemodel  theory. The reality ok, obviously impliesy{™® = (4®)*.

is given in Sec. IV, while some further comments are givenThe ansatz9) is known as a multiple-scale expansidiSE)

in Sec. V. (see[12] and references thergin
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It is easy to show that the MSE is nothing but a narrow  Condition(13) implies[10] that, for solutions/({, ) of
packet approximatiorf9] with a wave packet widthsk  the NLS equation, the infinite time limitrp—o) and the
~ R, provided some constraints are satisfied. Indeed, if théow initial amplitude limit [||4(0)||;—0] commute; thus

fundamental harmonic is the only one initially excitéck., Eqg. (13) guarantees that solutions of the NLS equatib®)
y@=0 for a# +1 atr=0), the Fourier transform, of x,  Present a purely dispersive dynamics and are analytical con-
turns out to be tinuations of solutions of the linearized equatigcorre-

sponding to the quadratic part of the FPU Hamiltomidn
- o other terms, conditiofil3) guarantees that one is in a “regu-
X= ; e i(k-an,@(Rn) lar” regime, with motions qualitatively similar to the unper-
turbed ones. An intense spreading of the energy out of the

1 . k—aq excited packet might occur instead only if condititkB) is
~— @ ; (10)  violated. The reasons why this is actually expected are ex-
VR =1 VR plained at the end of the present section. So we take the

) ) ) lowest energy violating conditiofiLl3) as our analytical esti-
in the last step the sum ovaiwas converted into a Riemann mate of the threshold.

integral usingR<1 as a lattice step, and the function e now formulate the threshold condition in terms of the
YA (&) =dze Y@ (¢) was introduced. On the other harmonic energy of the central normal mode for a wave

hand, if we take initial data such that~1, where packet given by E(9) at 7=0. To this end, we remark that
by looking at the Fourier transforifi0) one easily finds

T2 _ 21 (1) ¢1]2 (1) ]2 1 R
¢ fdfélw (§)|/fd§|</f &7 ay Eq(T:O;@EEHd

X
dr ¢

2
2
—I—wq

1
2]:—8q+0(1/R)

Xq =
it follows that x,(0)#0 only for lk+q|=< VR, namely, we (14
are exciting a packet of normal modes centered agouth \\ith 4 certain coefficieng, whose expression is given be-
a width of S'Ze_\/ﬁ- Since we are taking/R<1, this is @ o, Notice that the leading term of tiRRexpansion o is
narrow (or quasimonochromatiavave packet. singular because, &—0, the equations of motiof¥7) be-

~ Now, substituting the ansat®) into the equations of mo-  come Jinear and the solutiof®) represents a plane wave on
tion (7) and proceeding up to ordét =2 as sketched inthe 4, jnfinite lattice, thus having a diverging energy. A simple
Appendix, one finds that the zero-order amplitude of the fun+gicylation shows that

damental harmonicy= ¢ =y V(- (dwy/dqg) 71,7,;0)

satisfies the nonlinear Sclimger equation o~ . 2, 2
eq= 02 #(0,0|?= w? f d{y(£,0)| <w? f dZ[¥(2,0)| ] .
2
w w w
iale//—?“agzp—?q 8 1—7q +3w?||y2y=0. (19
(12) Thus, if condition(13) holds, one necessarily has
The functiomﬂ turns ou_t to be the dominant contributiqn to Eq(0)< £w582+0(1/R)
the approximate solution(9), because MSE calculations R

show that higher harmonicgvith |a|=2) are at most of

order R, i.e., negligible with respect tg, for g> R, in the _ o? wg +o(1R) (16)
generic case in whiclu#0. The fact thatyy dominates is 2R 8#(1—w§/4)+3“’c21 '

instead always guaranteed in the special case0 (or

equivalentlya=0). So we take as our estimate for the threshold the leading

The NLS equatiorf12) is an integrable ongl3,14. From  contribution to the right-hand side of E¢L6), namely,Eg
inverse scattering transform theory it is known that, since the= wéSﬁ/R. Turning to physicali.e., dimensionalvariables,
dispersion coefficient- %wq:j(dzwq/dqz) and the coeffi-  one has to multiply the latter expression by a factor
cient of the nonlinear termy|“y are both negative, Eq12)  A202/4=R0%/(168) and this produces the formula given in

a priori admitssoliton solutions in the class of initial data gq. (4). In terms of u=4a%(B0?) and »/Q it takes the
rapidly decreasing fof— *oo (this is indeed the class we form

choose to investigate here, corresponding to finite energy
excitations in the lattice The following theorem holds, how- a’Q4 (w/Q)?

ever[15,11]. Erpu(@)= 96 _ 2 2
If the initial datum satisfies the condition B 2u[1~(0/Q)?]+3(0/Q)

17

_1z We now illustrate why energy sharing is expected above
=S threshold. Suppose we relax conditigh3). As a conse-
9 quence it might happen thd,(0)> Eg and also that the
(13) NLS equation(12) admits a general solution with both a
radiative (i.e., dispersive component and a multisoliton
(wherea=1In(2++/3)), then Eq. (12) admits no soliton solu- componen{10]. In the presence of solitons the two limits
tions. guoted above no longer commute, and qualitative differences

2

)

__4d
8,LL(1 2

(o

fﬁdzl«/f@,n=0>|<ﬁ

2
+3wq
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FIG. 1. FPU model; norn;alizezd energy thresholdwA) for FIG. 2. FPU model; normalized energy thresholdw/€); com-
four different values ofu=4a“/BQ0". parison between the theoretical estiméte u=4a%/B0%=1.78)

and the numerical data for a Lennard-Jones model. Different points
with respect to the unperturbed case appear. A single solitost a given frequency correspond to different valuep,dhe param-
causes a wave vector shifk~ R/, and a frequency shift eter indicating the maximal fraction of initial energy given out by
dw~Rlw,dw,/dg in the fundamental harmonic compo- the excited packet.
nent of the wave packet; the energy of the mgdedk turns ) _
out to be justEq s(72) *ES (to leading order This shows ~ though depending parametrically pnseem to collapse on a
that solitons contribute to energy transfer to normal mode§ingle curve if the ordinates are normalized through division
initially not excited. WhenE,(0)> Eg we expect such a by Ef, .- The fit with our theoretical formula, shown in Fig.
mechanism to become very efficient and a strong interactiod: S€ems remarkable.

between normal modes to take place, leading to an intense !N passing, we point out that numerical results are also
spreading of the wave packet. available for a two-dimensional FPU system with LJ inter-

action; sed16].

IIl. COMPARISON WITH THE NUMERICAL RESULTS IV. THE ¢* MODEL

e o aer L n s secion we appy he MSE 1 e model )

studied and results, are found giving a thre,sho.IéLindependen efining x,=dpn /A and 7= ({/2)t, the equations of motion
' A . ~in dimensionless form become

of frequency. This is in complete agreement with our esti-

mate (17), where foru=0 the dependence am is seen to 4

completely disappear. In the world] a Lennard-Jones Xp=

model(i.e., with x=1.78) was studied instead, and a thresh-

old increasing withw more or less in a parabolic way was

found. It seems nontrivial that our analytical estiméi®) Here, as usual() = \/m is the maximum frquency in

takes into account, at the same time, two such different re; . . . — 2+ de SiA(K2): ) i
sults. This is illustrated in Fig. 1, wheE (normalized to its the dispersion relation (k) = ym™+ 4e sir(l/2), the dimen

; _ 2 _ 2102
maximumeE;,, ) is plotted vsw for four different values of sionless parameterg=4¢/m- andR=4\A /0" (Reynolds

; numbej were also introduced. Making the ansd® and
K- The largest va!ug ok corres_por)ds to t.h(.a LJ pqtent(abr using exactly the same notations as in the previous section,
which a paraboliclike behavior is exhibitedwhile as u

the slowly modulating amplitude of the fundamental har-

Y
- mxﬁ m(xmﬁ Xn—1—2Xn) — R .
(18)

—0 the curves tend to the horizontal liE&/Ef, = 1. monic is easily shown to satisfy the NLS equation
A quantitative comparison between our estimdté and
the numerical results found if4] for the LJ potential is (1+ ) wt—16 3
reported in Fig. 2. IN4] the threshold was defined in the id. p— g agl/f— —|y?y=0, (19
following way. A packet of nearby frequencies, centered ? 2(1+ n)wy 204

about a frequencw, was initially given a certain enerdy,

and the dynamics was followed up to a certain observatiofvhere g is the renormalized dispersion relation, namely,
time. A parametep(0<p=1) was then introduced, repre- ®@q=2w(q)/Q=(2/J1+ 7)1+ nsinf(g/2). Notice that the
senting the maximal fraction of the initial energy which was coefficient in front of the dispersive terﬁftﬁ is nothing but
given out by the packet. The computations were repeated fo}(dzldqz)wq. For values ofq such thatw,<2/(1+ n)Y4
increasing values of the initial enerdsyy and the value op ~ one has (|2/dq2)a)q>0 and the NLS equatiofl9) becomes
was found to be an increasing function®fHaving fixed a  “defocusing” [14]. In such a case there cannot be soliton
value ofp, the critical energye®(w;p) was then defined as solutions in the class of initial dafa/({— *%,0)—0} and,
the one required to produce the given valugolt turns out  as a consequence, there is neither an upper bound dn, the
that the “curves” E° vs w (or vs w/Q) thus defined, al- norm of the initial data giving a criterion for a threshold, nor
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FIG. 4. ¢* model; normalized energy threshold ¥$Q); com-
parison between the theoretical estimate and the numerical data
(corresponding tg@=0.5) for »=40.

FIG. 3. ¢* model; normalized energy threshold &$Q for four
different values ofp=4¢e/m?.

clear-cut evidence of a quasilinear regime. gosuch that ) . )
wq=2/(1+ 7)"* the theorem quoted in the previous section€N€rgy is lower forw < w* and tends to zero as tends to its

can be applied instead. The upper boufcto the L, norm minimum. It turns out that the characteristic frequeney,
of the initial datum is defined in such a way by numerical computations, agrees

rather well with our frequencw, ; a fact that hardly seems
\F\/(H 7 we—16
Sq:()' 5—, w

fortuitous.
=——— (20
o 1+9 a (1+ 77)1/4

V. FURTHER COMMENTS

and for the energy threshof=w;Sg/R we then obtain We address here three points. The first one concerns the
problem of the thermodynamic limit, namely, the limit in
which one deals with infinitely many particles and an infinite
(21) energy, with a finite energy per particle. This is a problem

that plays an essential role in statistical mechanics, and was

Turning to physical variables, this gives the reg@jtquoted  €Xtensively studied in the frame of the FPU mokele[ 18—

in the Introduction. In terms of the dimensionless quantities?0): Now, it should be quite clear that the present work is
7 and w/Q, it takes the form not dealing at allat least in a direct waywith the thermo-

dynamic limit, because we are considering a system with

202 (1+ n)wg—16 2
= = —-
4 3R 1+77 @q (1+77)1/4

25204 1 infinitely many particles while exciting a narrow packet of
. B N (w/Q)*— 1. 0= w0, modes with a finite amount of energy, so that our system has
E¢4(“’)_ K (22) a vanishing energy per particle. We would like to stress,
0, w=o., however, that the case considered here has considerable

physical interest. Indeed, in nonlinear acoustics, for example,
where w,=0/(1+ )" The energy threshold below the yitrrasonic waves are used to study phonon-phonon interac-
cutoff w. was set to zero for the reasons explained above. Aion and in solid state physics many phenomena can be pro-
plot of E°(w)/Ef,,, for different values ofp=4e/m? is re-  duced by means of laser radiation; clearly, in both such cases
ported in Fig. 3. one is dealing withcoherent pulsesf finite energy(with a

A gquantitative comparison with the numerical datd®f  well defined frequengyin macroscopic systems. Anyway, it

is reported in Fig. 4. The numerical values of the parameteris not excluded priori that the present results might turn out
chosen in[5] were such thaty=4e/m?=40. From Fig. 4 to shed some light on the problem of the thermodynamic
one sees that the agreement is very good for the high frdimit itself. This is an interesting point that we plan to inves-
guencies, while the situation concerning the low frequenciesigate in the future.
below the cutoffw., is not so clear. Further numerical in-  The second point concerns a comparison with the avail-
vestigation might clarify this point. In any case, the claim able analytical estimates for the energy thresholds, namely,
that some relevant role might be played by the cutoff fre-those of Izrailev and Chiriko6] and of Berman and
quencyw, for the ¢* model seems to be supported by the Kolovskii [9]. The estimate of Izrailev and Chirikov was
results of another numerical work, namel§7]. Actually, in  concerned with thgg model and gave a threshold decreasing
that paper, attention was addressed not to the existence with frequency, contrary to the flat behavior of the numerical
energy thresholds in the sense discussed here, but ratherdata of[3], which agree very well with our formulél?).
the “final” distribution of energy among the modes. How- This seems to indicate that the approach based on the over-
ever, the results show that for td model(at variance with  lapping of resonances deserves further discussion in the case
the B8 FPU model there exists a characteristic frequency, sayof infinitely many degrees of freedom.
w*, such that equipartition holds only for> w*, while the In any case our results seem to indicate that the methods
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of inverse scattering are appropriate when many degrees of resonances within the multiple-scale approach. This
freedom are involved, as was first suggested by Berman andould possibly allow one to produce relevant information
Kolovskii. The problem then remains of understanding whyabout the physically significant problem of the “final” dis-
they found a different analytical estimate for the thresholdtribution of energy among the modes also. We hope to be
Our opinion is as follows. What we have in common is theable to come back to these very interesting problems in the
idea of defining the threshold as corresponding to an intenstiture. The extremely good agreement of the present analyti-
spreading of the energy from the excited packet to othecal estimate for the threshold with the numerical results
modes, in terms of properties of the NLS equation. At thisseems to be promising.
point we make use of a deep analytical result known in the
literature, giving a condition for the existence of solitons, APPENDIX: PERTURBATIVE METHOD
which, at least in the models studied here, just turns out to
constitute the mechanism for the energy sharing. Berman ar]
Kolovskii were using a criterion of self-consistency for the 0
validity of the narrow packet approximation instead. Our
opinion is that the introduction of the latter criterion was Xn.i= >, e~ 2%@@n=eq)y@ s+ R 7, ... 7y :VR)
indeed correct, and that the authors apparently just did not ac’
work it out in a completely satisfactory way. Indeed, it can
be shown explicitly that a more precise elaboration of their = > e*iadgia(an— wqf)e—~RﬂéE R2y@ (s 11, ... omw);
consistency criterion leads exactly to our formulag]. ae’

The third point is a short discussion on the meaning of the
threshold introduced in the present paper. From the very d? +2 Rz J\?
definition given above, it should be quite clear that such a g2 =] T1aeet 2 o,
threshold is just an estimate “from below” ensuring, on the
basis of a deep theoretical result of soliton theory, the exisHaving made such/R expansions, grouped together the
tence of ordered motions with no effective energy spread ouerms of the same order, and written down the equations of
of an initially excited packet. What really occurs, or evenmotion as power series, one just has to set to zero all of their
might be expected, above threshold is an extremely interestoefficients, taking care that “seculaff.e., time increasing
ing question. In particular, from the point of view consideredterms in the approximate solutiof®) of the equations of
here, one should extend the present result and understand thmtion are not generated in such a way. As usual in MSE
role solitons play in connection with Arnold’s diffusion applicationg[12], by “killing” a secular term at second or-
along the so-called stochastic web, i.e., understand the roer[ O(R) in our casé the NLS equation is obtained.

The “implementation” of the MSE is based on the fol-
wing steps:

Xp -
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